

High-Order Tomography

Network tomography is a family of techniques for inferring information about the structure
and internal state of a network from end-to-end measurements.
Classically, tomography has been used to estimate properties of links, such as their average delay
or packet loss rate, assuming that the routing matrix is known.
But routing matrices are becoming increasingly difficult to identify. The traditional approach of
using traceroutes is becoming less effective, as
more and more routers are configured to ignore traceroute probes [https://link.springer.com/chapter/10.1007/978-3-642-00975-4_3].
Without access to the routing matrix, most applications of network tomography become impossible.

Fortunately, network tomography has come to its own rescue in recent work, as techniques have been
developed to infer the routing matrix itself from end-to-end measurements.
Tomography does not require internal routers to cooperate with traceroutes, since the probes can
be disguised as normal network traffic: only the statistics of delays, loss rates, etc.
are relevant. In particular, second-order statistics known as path sharing metrics
(such as covariances in delays) can be used to reconstruct multicast trees.

High-Order Tomography (HOT) aims to infer general routing matrices from end-to-end data,
without making any assumptions about the routing behavior.
In order to accomplish this, we use high-order statistics of end-to-end data,
going beyond second-order path sharing metrics. The mathematics are detailed in our paper
Topology Inference with Multivariate Cumulants: The Möbius Inference Algorithm [https://arxiv.org/abs/2005.07880],
which is to appear in IEEE/ACM Transactions on Networking.

Finally, a word of warning: since this project is a prototype for research purposes, this code should
not be used in a production setting. We make no guarantees regarding its accuracy.

Contents:

	Installation
	Requirements

	Installation

	Getting Started
	Create a Synthetic Dataset

	Infer the Routing Matrix

	Evaluating the Prediction

	Command Line Documentation
	Sub-commands:

	License, Citations, and Acknowledgements

Installation

Requirements

HOT requires the following packages:

	NumPy

	SciPy

	CVXPY

	NetworkX

	PyMoments [https://pypi.org/project/PyMoments/]

Installation

We suggest installing HOT in a new environment. Using Anaconda, create and activate
a new environment for HOT:

conda create --name hot python=3.8
conda activate hot

Navigate to your directory of choice, and clone the source:

git clone https://github.com/KevinDalySmith/high-order-tomography.git

Finally, install the package:

python -m pip install ./high-order-tomography/

Getting Started

Create a Synthetic Dataset

To begin, we will need some data. We can create synthetic measurements of path delays using the generate
command. Creating this dataset first needs an underlying network, with nodes representing routers and edges
corresponding to links. In the /high-order-tomography/data/rocketfuel/ directory, we have provided several
real-world networks from the Rocketfuel database, stored as edgelists. Let’s create a scenario based on the
AS2914 topology.

Navigate to the high-order-tomography root directory, and run the following:

$ hot generate \
 ./data/rocketfuel/AS2914.txt \
 ./data/generated/AS2914samples.csv \
 ./data/generated/AS2914links.json \
 --monitors 5 --samples 100000

Out:

Constructing graph from ./data/rocketfuel/AS2914.txt...
Selecting monitor paths...
Sampling delays...
Writing delay data to ./data/generated/AS2914samples.csv...
Writing routing matrix to ./data/generated/AS2914links.json...
Done! Sampled 100000 delays from 10 monitor paths traversing 18 logical links.

In this scenario, we have randomly designated 5 leaves from the AS2914 network as “monitor nodes”.
For each of the 10 pairs of monitor nodes, we have selected a between these nodes as a “monitor path”.
The monitor paths do not span the entire network; rather, as the output of the generate command
indicates, these 10 monitor paths only utilize 18 logical links, leading to a 10x18 routing matrix.
The contents of this ground-truth routing matrix are contained in the newly created file
./data/rocketfuel/AS2914links.json:

[
 [0, 2, 6, 7],
 [2],
 [4, 6],
 [0, 1, 3, 8],
 [9],
 [0, 6, 7],
 [2, 4, 5],
 [2, 3, 4, 5],
 [8, 7],
 [3],
 [2, 4],
 [0, 1, 8],
 [1],
 [1, 4, 6, 9],
 [8, 9, 5, 7],
 [5],
 [4],
 [0, 8]
]

(Note the order of lists and of the numbers within them may be different, as these represent unordered sets.)
Each list corresponds to a link, and the numbers indicate which paths utilize the link. For example, the set
[0, 2, 6, 7] represents that the routing matrix contains a column where rows 0, 2, 6, and 7 have an entry
of one, while all other entries are zero.

The second newly created file, ./data/rocketfuel/AS2914samples.csv, is an array of path delay samples.
Each column corresponds to a monitor path, and each row is a sample of the total delay along that path.

Infer the Routing Matrix

Next, we will try to use the data in ./data/rocketfuel/AS2914samples.csv to try and reconstruct the routing
matrix represented in ./data/rocketfuel/AS2914links.json. From the high-order-tomography directory, run
the following:

$ hot infer \
 ./data/generated/AS2914samples.csv \
 ./output/AS2914/ \
 --order 3 --alphas 1e-40 1e-30 --powers 0.95 --thresholds 0.85 \
 --max-size 4 --l1-weight 1.0 --l1-exponent 0.5 --n-groups 50

Out:

Estimating bounding topology...
Estimating common cumulants...: 100% 60/60 [00:29<00:00, 2.03it/s]

The first argument is the synthetic dataset we created in the previous section, and the second argument is
the directory where the routing matrix estimate and auxiliary files will be written. The remaining settings
are tunable parameters that are described in the command line documentation.

The directory high-order-tomography/output/AS2914/ contains 5 new files. For the purposes of this tutorial,
we are only interested in predicted-links.json. The file contains several attributes recording the parameters
to reproduce this particular estimate, as well as the predicted-links attribute itself.
The value of the predicted-links attribute is a list-of-lists encoding a routing matrix in the same format
as ./data/rocketfuel/AS2914links.json: each list is a link, containing the set of monitor paths that utilize
the link.

Evaluating the Prediction

How accurate was the prediction? We can find out using the evaluate command:

$ hot evaluate ./output/AS2914/predicted-links.json ./data/generated/AS2914links.json

The first line of the output evaluates the bounding topology, i.e., estimate for which common cumulants are nonzero.
The precision and recall indicate that the bounding topology estimate was 100% accurate; i.e., the algorithm
was able to determine exactly which path sets correspond to nonzero common cumulants:

Bounding topology precision: 1.0000, recall: 1.0000

The next lines indicate the true positives. These are all of the columns of the routing matrix (represented by the
list of paths corresponding to nonzero entries) that the algorithm correctly identified:

Found 17 true positives:
 {0, 2, 6, 7}
 {2}
 {4, 6}
 {0, 1, 3, 8}
 {9}
 {0, 6, 7}
 {2, 4, 5}
 {2, 3, 4, 5}
 {8, 7}
 {3}
 {0, 1, 8}
 {1}
 {1, 4, 6, 9}
 {8, 9, 5, 7}
 {5}
 {4}
 {0, 8}

The next lines indicate the false positives, i.e., columns of the routing matrix that the algorithm falsely detected:

Found 4 false positives:
 {7}
 {8}
 {0}
 {6}

The next lines are the columns of the routing matrix that were missed:

Missed 1 false negatives:
 {2, 4}

Finally, the last line reports the precision, recall, and F1 score of the routing matrix estimate:

Routing topology precision: 0.8095, recall: 0.9444, f1: 0.8718

Command Line Documentation

usage: hot [-h] {infer,generate,evaluate} ...

Sub-commands:

infer

Infer routing topology from additive path data.

hot infer [-h] [--order ORDER] [--alphas ALPHAS [ALPHAS ...]]
 [--powers POWERS [POWERS ...]]
 [--thresholds THRESHOLDS [THRESHOLDS ...]] [--n-groups N_GROUPS]
 [--resample-size RESAMPLE_SIZE] [--max-size MAX_SIZE]
 [--l1-weight L1_WEIGHT] [--l1-exponent L1_EXPONENT]
 [--nnz-threshold NNZ_THRESHOLD] [--solver_args SOLVER_ARGS]
 [--seed SEED]
 data_filename output_directory

Positional Arguments

	data_filename

	CSV file containing the path data sample.

	output_directory

	Directory where output files from the inference are saved.

Named Arguments

	--order

	Maximum cumulant order to evaluate.

Default: 3

	--alphas

	Significance threhsolds for nonzero common cumulant tests at orders 2, 3, 4, …, <order>. E.g., “–alphas 1e-40 1e-30” accepts nonzero 2nd-order ccs to a significance of 1e-40 and 3rd-order ccs to a significance of 1e-30.

	--powers

	Statistical power estimates for the nonzero common cumulant tests at orders 3, 4, …, <order>. E.g., “–powers 0.95 0.9” estimates the test power to be 0.95 for 3rd-order ccs and 0.9 for 4th-order ccs. If a single float is provided, this power is used for all orders.

	--thresholds

	Robustness thresholds for tightening the bounding topology at orders 3, 4, …, <order>. Similar to –powers. If a single float is provided, this threshold is used for all orders.

	--n-groups

	Number of resamples to generate by bootstrapping.

	--resample-size

	Size of each resample to generate by bootstrapping. If 0, the resample sizes are the same size as the original sample.

Default: 0

	--max-size

	Largest acceptable size of a non-maximal path set.

	--l1-weight

	Weight for the lasso regularizer.

Default: 0.1

	--l1-exponent

	Exponent for the lasso regularizer.

Default: 0.0

	--nnz-threshold

	Threshold to decide if estimated exact cumulants are nonzero.

Default: 0.001

	--solver_args

	JSON object of arguments for the CVXPY solver. See CVXPY documentation at https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options

Default: “{“verbose”: false, “solver”: “OSQP”, “eps_abs”: 1e-10, “eps_rel”: 1e-10}”

	--seed

	Random seed.

Default: 1234

generate

Generate synthetic path delay data.

hot generate [-h] [--monitors MONITORS] [--samples SAMPLES]
 [--delay-mean DELAY_MEAN] [--delay-std DELAY_STD]
 [--delay-scale DELAY_SCALE] [--seed SEED]
 edgelist_filename data_filename links_filename

Positional Arguments

	edgelist_filename

	Edge list file for the underlying network.

	data_filename

	Path for the output file of path delay samples.

	links_filename

	Path for the output file with the ground-truth links (as path sets).

Named Arguments

	--monitors

	Number of monitor nodes.

Default: 5

	--samples

	Number of path delay samples.

Default: 100000

	--delay-mean

	Average of mean delays for links.

Default: 10.0

	--delay-std

	Std. dev. of mean delays for links.

Default: 2.0

	--delay-scale

	Scale parameter for link delay gamma distributions.

Default: 4.0

	--seed

	Random seed.

Default: 1234

evaluate

Evaluate an estimated routing topology against ground truth.

hot evaluate [-h] estimate_filename true_filename

Positional Arguments

	estimate_filename

	JSON file containing the predicted-links (as path sets).

	true_filename

	JSON file containing the ground-truth links (as path sets).

License, Citations, and Acknowledgements

This project by Kevin D. Smith is licensed under a non-commercial Creative Commons license
(CC BY-NC 4.0 [https://creativecommons.org/licenses/by-nc/4.0/]). When possible, please cite
our paper:

@article{KDS-SJ-FB-AS:22,
 author = {K. D. Smith and S. Jafarpour and A. Swami and F. Bullo},
 title = {Topology Inference with Multivariate Cumulants: {The} {M\"obius} Inference Algorithm},
 journal = {IEEE/ACM Transactions on Networking},
 year = 2022,
 note = {To appear},
 url {https://arxiv.org/pdf/2005.07880.pdf}
}

This work was supported by the U.S. Defense Threat Reduction Agency, under grant HDTRA1-19-1-0017.

Index

 nav.xhtml

 Table of Contents

 		
 High-Order Tomography

 		
 Installation

 		
 Requirements

 		
 Installation

 		
 Getting Started

 		
 Create a Synthetic Dataset

 		
 Infer the Routing Matrix

 		
 Evaluating the Prediction

 		
 Command Line Documentation

 		
 Sub-commands:

 		
 infer

 		
 generate

 		
 evaluate

 		
 License, Citations, and Acknowledgements

_static/minus.png

_static/plus.png

_static/file.png

